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1. INTRODUCTION

Earthquakes cause significant damage, requiring fast and accur-
ate detection of affected buildings in remote sensing imagery.
Remote sensing technologies, such as Very High Resolution
(VHR) optical images and Synthetic Aperture Radar (SAR),
are crucial for disaster management (Dell’Acqua and Gamba,
2012, Dong and Shan, 2013, Contreras et al., 2021). While
VHR optical images are easier to interpret, SAR imagery offers
all-weather capabilities, and enhanced resolution of contempor-
ary SAR satellite images enables the extraction of information
at the individual building level (Sun et al., 2021, Chen et al.,
2021, Sun et al., 2022), comparable to VHR optical data (Chen
et al., 2021, Li et al., 2023). Existing research often relies on
both pre- and post-earthquake SAR images; however, pre-event
VHR SAR data is often unavailable in most regions. Therefore,
the question of whether a single VHR SAR image acquired after
an event can effectively identify damaged buildings remains to
be addressed.

In this regard, benchmark datasets are crucial for developing
and comparatively assessing various methodologies designed
to address the following questions: To what extent can a single
VHR SAR image, acquired post-event, allow to identify dam-
aged buildings and with which accuracy? Additionally, how do
the outcomes derived from a single post-event SAR image com-
pare with those of an optical image? Challenges in creating
such datasets include limited high-resolution SAR images, ab-
sence of damaged building labels, and lack of accurate terrain
models. The presented work introduces the first dataset to as-
sess the effectiveness of single post-event VHR SAR images in
identifying damaged buildings, integrating publicly accessible
satellite imagery and annotations from the 2023 Turkey-Syria
earthquakes. The dataset includes over four thousand buildings
with co-registered post-event SAR image patches, serving as a
benchmark for machine learning and deep learning methods in
damaged building detection.

This abstract briefly reports our work on a benchmark dataset
for detecting earthquake-damaged buildings from single post-
event VHR SAR imagery.

2. POST-EARTHQUAKE SAR-OPTICAL DATASET

The study area, Islahiye in southeastern Turkey near the Syr-
ian border, was significantly affected by a magnitude 7.8 earth-
quake on February 6, 2023, followed by a 7.5 magnitude af-
tershock. The disaster led to widespread destruction, causing
loss of life, injuries, and extensive damage to buildings and in-
frastructure. To create a dataset of post-earthquake buildings,

we use a Spotlight SAR image from Capella Space acquired on
February 9, 2023, with a pixel spacing of 0.35 m, and an op-
tical image from Maxar WorldView-3, captured on February 7,
2023, with a ground sampling distance of 0.31 m, for compar-
ison. Post-event building footprints and labels were obtained
from Humanitarian OpenStreetMap Team. All data are projec-
ted to the UTM coordinate system for uniform processing, with
the SAR image logarithmically scaled in dB for further ana-
lysis.

The dataset comprises 169 damaged and 3860 intact buildings
in the study area, with each having four patches: SAR image,
SAR footprint, optical image, and optical footprint. The dataset
is generated in two main steps:

First, we co-register building footprints with the satellite im-
ages. Building-level analysis requires accurate registration of
2-D building footprints with satellite images. The ARD optical
image aligns well with building footprints, requiring no addi-
tional registration. For the GEO SAR image, inspection shows
that building polygons are not well-matched with the SAR im-
age and further registration is needed. We apply the algorithm
developed in (Sun et al., 2020) to improve the alignment of
building polygons and the SAR image. The algorithm relies
on the corresponding building features representing the bottom
of sensor-visible walls in both the two data, i.e., double bounce
lines in the SAR image and near-range boundaries of 2-D build-
ing polygons. As the majority of buildings remain upright, with
expected double bounce line signatures on the SAR image, the
algorithm is applicable.

Then, we crop SAR and optical image patches for each build-
ing, considering the target building area (footprint, wall, and
roof) and possible ruins, excluding surrounding buildings. For
side-looking SAR images, a 10-pixel buffer (around 3.5 m) is
added for far-range sides, and an additional buffer is added for
near-range sides to include layover areas. The optical image,
with a 6.3◦ off-nadir angle, requires a 16-pixel buffer to com-
pensate for roof offset, ensuring the image patches include the
entire roof. Footprint masks are generated for each building cor-
responding to SAR and optical patches. For side-looking SAR,
the mask helps locate the target building amidst signals from
surrounding buildings. Nadir-looking optical data also include
footprint masks for fair comparison with SAR.

3. EXPERIMENTAL RESULTS

3.1 Baseline Approaches and Implementing Details

Four methods are introduced for benchmarking: support vector
machine (SVM), random forests (RF), a 3-layer convolutional
neural network (CNN), and ResNet-18 (He et al., 2016).



SVM and RF are chosen for their reported effectiveness in clas-
sifying collapsed and standing buildings from post-event SAR
imagery (Gong et al., 2016). Feature extraction follows (Gong
et al., 2016), using four first-order statistics and eight second-
order image statistical measures. A 3-layer CNN and ResNet-
18 are selected as deep learning methods. The CNN includes
convolution-ReLU-maxpool blocks, followed by average pool-
ing, a linear layer with dropout, and a final classification layer.
ResNet-18 follows the standard design, consisting of 18 convo-
lutional layers with residual connections. Similar to the simple
CNN, a linear layer with dropout is added before the final clas-
sification layer. Cross-fold experiments are conducted on the
dataset, split into 5 folds with a balanced number of damaged
and intact buildings. Each experiment is run 5 times, with 4
folds for training and 1 for testing. Preprocessing involves re-
moving 2% pixel outliers and normalizing pixel values to the
range [0,1].

For deep learning methods, the CNN is randomly initialized,
while ResNet-18 uses ImageNet pretrained weights. Data aug-
mentations include random resized crop and random horizontal
and vertical flips. To address class imbalance, weights are as-
signed during data sampling. Binary cross entropy loss is op-
timized with the AdamW optimizer for 30 epochs, following a
cosine-decay schedule starting from 0.0001, with a batch size
of 32.

3.2 Evaluation Metrics and Performance Comparison

Precision, recall, and F1 scores, along with the area under the
receiver-operator curve (AUROC), are reported for evaluating
baseline methods. The metrics provide a comprehensive un-
derstanding of model performance, considering true positives,
false positives, true negatives, and false negatives.

Table 1 presents model performance variations on the dataset.
For SAR images, SVM shows lower precision but excels in
recall (0.495). RF outperforms in precision but has lower re-
call. CNN produces a relatively high F1 score and the highest
AUROC (0.739), demonstrating proficiency in handling com-
plex features directly from raw SAR data. ResNet-18 underper-
forms compared to CNN in all metrics.

For optical images, ResNet-18 stands out with the highest pre-
cision, recall, F1 score, and AUROC. CNN demonstrates a bal-
ance between precision and recall (0.432), resulting in a high F1

score and an impressive AUROC (0.853). RF attains high pre-
cision but lower recall. SVM yields less favorable outcomes,
though its AUROC (0.723) surpasses three other models in the
SAR image category. Comparing SAR and optical images, SAR
images appear more challenging for all models, generally ex-
hibiting lower performance. For deep learning models, ResNet-
18 excels in optical images, while CNN outperforms ResNet-18
in SAR images. CNN’s better performance on SAR data may
be attributed to its ability to efficiently capture essential pat-
terns in SAR’s unique characteristics, reducing the risk of over-
fitting and leading to better generalization, especially with lim-
ited training data. In contrast, complex deep neural networks
may not be optimized for SAR-specific traits.

4. CONCLUSION

Detecting earthquake-damaged buildings in post-event satellite
imagery is challenging due to limited data. This study intro-
duced a dataset, combining post-event SAR and optical images

Table 1. Benchmark results on the dataset: 5-fold mean (std).
The highest values of different metrics are highlighted in bold.

image model Precision Recall F1 AUROC

SAR SVM 0.096 (0.021) 0.495 (0.202) 0.154 (0.037) 0.653 (0.068)
RF 0.223 (0.090) 0.344 (0.208) 0.231 (0.071) 0.670 (0.079)
CNN 0.167 (0.028) 0.371 (0.073) 0.228 (0.032) 0.739 (0.026)
ResNet-18 0.155 (0.067) 0.276 (0.080) 0.184(0.050) 0.653 (0.043)

Optical SVM 0.163 (0.044) 0.352 (0.148) 0.207 (0.057) 0.723 (0.047)
RF 0.611 (0.215) 0.354 (0.098) 0.421 (0.106) 0.810 (0.062)
CNN 0.489 (0.154) 0.432 (0.078) 0.449 (0.096) 0.853 (0.045)
ResNet-18 0.666 (0.121) 0.539 (0.147) 0.581 (0.100) 0.938 (0.022)

with labeled damaged and intact buildings for image classi-
fication. Baseline methods revealed that detecting damage in
SAR images is valuable but more challenging than in optical
images, emphasizing the need for improved methods. While
focusing on individual SAR image performance, the potential
fusion of multi-modal data could enhance overall effectiveness
when available simultaneously.
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