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1. Introduction  

Climate change-induced sea-level rise is predicted to exacerbate 
the catastrophic damage of floods in the future, especially in 
coastal areas (Didier et al. 2019). This effect is particularly 
challenging for Atlantic Canada as the water level is predicted to 
rise by around 1m on different shorelines of the region. The area 
is also known for high tidal effects, exacerbating the challenge. In 
our study area, in Memramcook, New Brunswick, Canada, there 
exists a historical dike structure along the river to protect the 
agricultural and urban lands from the high tidal effects of the 
Memramcook River. However, the rise in climate change-induced 
water levels is predicted to overflow the dike system, making it 
dangerous for the surrounding lands. In this project, we aimed to 
predict the effect of the water level rise in the area to elevate the 
dike structure.  
One of the effective methods for predicting inundated areas is the 
Hight Above the Nearest Drainage (HAND) model (McGrath et 
al. 2018). HAND models can be created with digital terrain 
models (DTM) generated using different methods, including 
LiDAR data, which is the data used in this study.  
In inundation prediction using a HAND model, a water level 
observation derived from gauge stations is utilized to threshold the 
HAND values to predict the water body polygons. However, in 
our study area, no gauge observations exist near the river. Thus, to 
extract the required thresholds, we obtained the water extent 
polygons from the satellite imagery of existing flood events. 
The final goal of this project is to add the water level raised by 
climate change to the water level of the worst flood events in the 
area to predict the vulnerability of the surrounding lands in the 
worst-case scenario. With this elevated water level, the local 
government can plan to increase the elevation of the existing dike 
structure. 
The flood events detected in the historical images of the study area 
date back to the 1970s when the only satellite observation 
available was through Landsat sensors with a 30-m spatial 
resolution (for the sake of brevity, in this study, we refer to spatial 
resolution as resolution). Therefore, to overcome the resolution 
gap, we employed a Super-Resolution technique on the archived 
satellite imagery to enhance the threshold selection process. 
Super-resolution is regarded as an up-sampling technique as an 
alternative to more traditional methods like cubic resampling and 
pan-sharpening (Lezine et al. 2021, Vivone et al. 2015). There 
have been successful attempts to use Generative Adversarial 
Networks (GANs) in Super-Resolution so far (Rabbi et al. 2020). 
These networks consist of two Convolutional Neural Networks 
(CNNs), including a generator responsible for generating outputs 
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with similar statistics as input data and a discriminator that is 
responsible for evaluating the likelihood of the outputs originating 
from the training dataset. With the training dataset including pairs 
of Low-Resolution (LR) and High-Resolution (HR) images, the 
generator upscales the LR images to the resolution of HR images 
to produce SR images. This step is then followed by the 
discriminator evaluating the accuracy of the generated SR image. 
In the study carried out by Lezine et al. (2021), the authors trained 
the ESRGAN model using three bands (NIR/Green/Red) of pairs 
of HR and artificially coarsened LR satellite images in an attempt 
to test a potential improvement on surface water classification, 
reaching improved results, especially at higher resampling factors. 
Although well-established and applicable in many areas, to the 
best of our knowledge, SR-GANs have not been extensively 
investigated in flood mapping applications. This study attempted 
to investigate the application of ESRGAN to detect the water body 
threshold for the HAND model in our study area.  

1. Methodology 

In this study, we employed Enhanced Super-Resolution 
Generative Adversarial Networks (ESRGAN) developed by Wang 
et al. (2018) to assess a potential improvement in water body 
classification. Then, we used the classified waterbody to find 
HAND model threshold. Finally, the water level rise due to climate 
change is added to the threshold to find the future waterbody 
polygon. The flowchart of this project is presented in Figure 1. 
 

 
Figure 1. Flowchart of the proposed work 



In this study, we obtained an LR image from a flood event and a 
matching HR ground truth image with similar conditions in terms 
of tidal effects and water level. This approach was necessary to 
ensure a high level of consistency in the analysis, acknowledging 
the fact that the time of data acquisition for these images was not 
the same. Table 2 shows the specifications of the data used in this 
study. 

Dataset Resolution Data time 
(UTC) Info 

Landsat-8 
image 30 m Aug 2, 

2016, 15:01  LR image 

WorldView-3 
image 0.5 m Oct 15, 

2016, 15:38  
HR image 

(ground truth) 

LiDAR point 
clouds 

6 
points/m2 

Aug 2 – 
Sep 28, 
2015 

LiDAR data 
for DTM 

Table 1. Information about the datasets used in this study 

We used the ESRGAN trained on satellite imagery by Lezine et al. 
(2021) to generate SR images. By applying resampling factors of 
4X and 10X, we generated SR images with 7.5m and 3m 
resolutions, respectively. Subsequently, using the Normalized 
Water Difference Index (NDWI), water classification was 
performed on LR, HR, and SR images. NDWI is calculated from 
the Green and Near-Infrared (NIR) bands using Equation (1). 
NDWI = (Green - NIR) / (Green + NIR)                                  (1) 
 

2. Results and Accuracy Assessment  

To conduct a comparative accuracy assessment without biasing the 
results by an extensive number of water pixels, the resulting water 
bodies were masked to a buffer zone of 60 meters around the river 
body to better compare the classified water/non-water pixels in the 
images. The formula for the accuracy assessment, calculated from 
parameters such as True Positive (TP), True Negative (TN), False 

Positive (FP), False Negative (FN), relative observed agreement 
among raters (p0), and hypothetical probability of chance 
agreement (pe), are shown in Table 2.  

Accuracy Metric Formula 

Overall Accuracy 
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

Precision 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹
 

Recall 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹
 

F1 Score 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

Kappa Coefficient 
𝑝𝑝0 − 𝑝𝑝𝑝𝑝
1 −  𝑝𝑝𝑝𝑝

 

Table 2. Formula used for accuracy assessment 

The results of the accuracy assessment, shown in Table 3, revealed 
an improvement in water classification in the 7.5m resolution SR 
(4X) image over the original LR image, as well as in the 3m 
resolution SR (10X) image over the 7.5m resolution SR image. 
Both 4X and 10X SR images showed higher overall accuracy 
compared to the LR image. Accounting for change agreement, the 
Kappa coefficient for the SR images also revealed a robust 
improvement over the LR image. The recall for the 10X SR image 
demonstrates a noticeable improvement in identifying all 
instances of water compared to the LR image, which is crucial in 
flood mapping applications. On the other hand, precision for the 
LR image was slightly higher, while a higher F1 score in SR 
images indicated a better balance between the precision and the 
sensitivity of the classification. 
The next step in accuracy assessment is to compare the results of 
the thresholded HAND model to an existing flood satellite image, 
which will be presented in the full paper. 
 

 Resolution (m) Image Overall 
Accuracy Kappa Recall Precision F1 Score 

1X 3 LR (original) 0.92 0.74 0.83 0.99 0.91 

4X 7.5 
LR (resampled) 0.88 0.75 0.78 0.93 0.85 

SR 0.89 0.77 0.80 0.93 0.86 

10X 3 
LR (resampled) 0.88 0.76 0.76 0.94 0.85 

SR 0.89 0.77 0.82 0.92 0.86 

Table 3. Results of accuracy assessment for different sharpening factors. 
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